organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Bromo-N'-[(*E*)-4-hydroxybenzylidene]-5-methoxybenzohydrazide

B. K. Sarojini,^a B. Narayana,^b K. Sunil,^b H. S. Yathirajan^c and Michael Bolte^d*

^aDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^dInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 15 August 2007; accepted 16 August 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.032; *wR* factor = 0.064; data-to-parameter ratio = 17.7.

The geometric parameters of the title compound, $C_{15}H_{13}BrN_2O_3$, are in the usual ranges. The C=N double bond is *trans* configured. The C=N-N-CO- group itself is planar, with an r.m.s. deviation of 0.044 Å, and makes a dihedral angle of 10.73 (19)° with the hydroxyphenyl ring, but forms a dihedral angle of 67.90 (8)° with the other aromatic ring. The crystal packing is stabilized by N-H···O, O-H···O and O-H···N hydrogen bonds.

Related literature

For related structures, see: Yang & Pan (2004; 2005); Butcher *et al.* (2007); Chang *et al.* (2007); Narayana *et al.* (2007); Yathirajan *et al.* (2007). For related literature, see: Hodnett & Dunn (1970); Misra *et al.* (1981); Varma *et al.* (1986); Singh & Dash (1988); Pandey *et al.* (1999); El-Masry *et al.* (2000); Aydoğan *et al.* (2001); Desai *et al.* (2001); Taggi *et al.* (2002).

Experimental

Crystal data $C_{15}H_{13}BrN_2O_3$ $M_r = 349.18$

```
Orthorhombic, P2_12_12_1
a = 9.4902 (6) Å
```

b = 10.9347 (8) Å c = 14.8687 (10) Å V = 1542.96 (18) Å³ Z = 4

Data collection

Stoe IPDSII two-circle diffractometer Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995)

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.032\\ wR(F^2) &= 0.064\\ S &= 1.06\\ 3536 \text{ reflections}\\ 200 \text{ parameters}\\ \text{H atoms treated by a mixture of}\\ \text{independent and constrained}\\ \text{refinement} \end{split}$$

Mo $K\alpha$ radiation $\mu = 2.68 \text{ mm}^{-1}$ T = 173 (2) K $0.27 \times 0.25 \times 0.23 \text{ mm}$

 $T_{\min} = 0.532, T_{\max} = 0.578$ (expected range = 0.497–0.541) 13120 measured reflections 3536 independent reflections 3204 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.58 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Absolute \ structure: \ Flack \ (1983),} \\ {\rm with \ 1510 \ Friedel \ pairs} \\ {\rm Flack \ parameter: \ -0.004 \ (8)} \end{array}$

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots O1^{i}$	0.84 (5)	2.07 (4)	2.799 (3)	145 (4)
$O2-H2 \cdot \cdot \cdot N2^{i}$	0.84 (5)	2.32 (5)	2.995 (3)	137 (4)
$N1 - H1 \cdots O2^{ii}$	0.86 (3)	2.01 (3)	2.866 (3)	170 (3)

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (ii) $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2}$.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

KS thanks the Department of Chemistry, Mangalore University, for the use of their research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2377).

References

- Aydoğan, F., Öcal, N., Turgut, Z. & Yolaçan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Butcher, R. J., Jasinski, J. P., Narayana, B., Sunil, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, 03652.
- Chang, J.-G., Cheng, Y. & He, X.-T. (2007). Acta Cryst. E63, 0474-0475.
- Desai, S. B., Desai, P. B. & Desai, K. R. (2001). *Heterocycl. Commun.* 7, 83–90.
 El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). *Molecules*, 5, 1429–1438.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.
- Misra, V. S., Singh, S., Agarwal, R. & Chaudhary, K. C. (1981). J. Chem. Soc. Pak. 3, 209–213.
- Narayana, B., Sunil, K., Yathirajan, H. S., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2948.
- Pandey, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). *Il Farmaco*, **54**, 624–628.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany. Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T.
- (2002). J. Am. Chem. Soc. 124, 6626-6635.
- Varma, R. S., Prakash, R., Khan, M. M. & Ali, A. (1986). Indian Drugs, 23, 345-349.
- Yang, J.-G. & Pan, F.-Y. (2004). Acta Cryst. E60, o2009-o2010.
- Yang, J.-G. & Pan, F.-Y. (2005). *Acta Cryst.* E**61**, 0831–0832. Yathirajan, H. S., Sarojini, B. K., Narayana, B., Sunil, K. & Bolte, M. (2007). Acta Cryst. E63, o2719.

supplementary materials

Acta Cryst. (2007). E63, o3862-o3863 [doi:10.1107/S1600536807040603]

2-Bromo-N'-[(E)-4-hydroxybenzylidene]-5-methoxybenzohydrazide

B. K. Sarojini, B. Narayana, K. Sunil, H. S. Yathirajan and M. Bolte

Comment

Schiff bases are known to have biological activities such as antimicrobial (El-Masry *et al.*, 2000; Pandey *et al.*, 1999), antifungal (Singh *et al.*, 1988; Varma *et al.*, 1986), antitumor (Hodnett *et al.*, 1970; Misra *et al.* 1981; Desai *et al.*, 2001), and as herbicides. Schiff bases have also been employed as ligands for complexation of metal ions (Aydoğan *et al.*, 2001). On the industrial scale, they have wide range of applications such as dyes and pigments (Taggi *et al.*, 2002). The crystal structures of 2-bromo-N-[(*E*)-4-chlorobenzylidene]-5-methoxybenzohydrazide (Butcher *et al.*, 2007), 2-bromo-5-methoxy-N-[(*E*)-(2-nitrophenyl)methylene]benzohydrazide (Yathirajan *et al.*, 2007), 2-bromo-N-[(*E*)-(4-fluorophenyl)methylene]-5-methoxybenzohydrazide monohydrate (Narayana *et al.*, 2007), N-[(1E)-(5-chloro-2-hydroxybenzohydrazide, (Yang & Pan, 2004) and 2'-(2-fluorobenzylidene)-2-hydroxybenzohydrazide (Yang & Pan, 2005) have been reported. A new Schiff base, C₁₅H₁₃BrN₂O₃, was synthesized and its crystal structure is here reported.

Geometric parameters of the title compound (Fig. 1) are in the usual ranges. The C=N double bond is *trans* configured. The C=N—N—CO– moiety itself is planar (r.m.s. deviation 0.044 Å). It makes a dihedral angle of 10.73 (19)°, with the hydroxyphenyl ring, but forms a dihedral angle of 67.90 (8)° with the other aromatic ring. The crystal packing is stabilized by N—H…O, O—H…O and O—H…N hydrogen bonds. The hydroxyl group forms a bifurcated H bond to the hydrazon N atom and the carbonyl group.

Experimental

A mixture of 2-bromo-5-methoxybenzohydrazide (0.735 g, 0.003 mol) and 4-hydroxybenzaldehyde (0.366 g, 0.003 mol) in 15 ml of absolute ethanol containing 2 drops of sulfuric acid was refluxed for about 3 h. On cooling, the solid separated was filtered and recrystalized from DMF (m.p.: above 523 K). Analysis found: C 51.51, H 3.71, N 7.95%; C₁₅H₁₃BrN₂O₃, requires: C 51.60, H 3.75, N 8.02%.

Refinement

H atoms were found in a difference map, but those bonded to C were refined using a riding model with C—H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for $C_{aromatic}$ and C—H = 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for C_{methyl} . The methyl group was allowed to rotate but not to tip. The H atoms bonded to N and O were freely refined.

Figures

Fig. 1. Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level.

 $\mathcal{X} \rightarrow \mathcal{X}_{\mathcal{V}}$

Fig. 2. The formation of the title compound.

2-Bromo-N'-[(E)-4-hydroxybenzylidene]-5-methoxybenzohydrazide

Crystal data	
C ₁₅ H ₁₃ BrN ₂ O ₃	$F_{000} = 704$
$M_r = 349.18$	$D_{\rm x} = 1.503 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 13820 reflections
<i>a</i> = 9.4902 (6) Å	$\theta = 3.9-27.7^{\circ}$
b = 10.9347 (8) Å	$\mu = 2.68 \text{ mm}^{-1}$
c = 14.8687 (10) Å	T = 173 (2) K
$V = 1542.96 (18) \text{ Å}^3$	Block, colourless
Z = 4	$0.27 \times 0.25 \times 0.23 \text{ mm}$

Data collection

Stoe IPDSII two-circle diffractometer	3536 independent reflections
Radiation source: fine-focus sealed tube	3204 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.044$
T = 173(2) K	$\theta_{\text{max}} = 27.6^{\circ}$
ω scans	$\theta_{\min} = 4.0^{\circ}$
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995)	$h = -12 \rightarrow 10$
$T_{\min} = 0.532, \ T_{\max} = 0.578$	$k = -14 \rightarrow 11$
13120 measured reflections	$l = -19 \rightarrow 19$

Refinement

H atoms treated by a mixture of independent and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0288P)^2 + 0.3101P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.58 \text{ e } \text{\AA}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 1997), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}
Extinction coefficient: 0.0078 (8)
Absolute structure: Flack (1983), with 1510 Friedel pairs
Flack parameter: -0.004 (8)

Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.82669 (3)	0.43390 (3)	0.193021 (18)	0.03868 (10)
C1	0.6507 (2)	0.6879 (2)	0.18939 (15)	0.0214 (5)
01	0.6900 (3)	0.78219 (16)	0.22737 (11)	0.0330 (5)
02	0.0445 (2)	0.60418 (16)	0.63181 (11)	0.0272 (4)
H2	0.068 (5)	0.664 (4)	0.665 (3)	0.076 (14)*
N1	0.5450 (2)	0.6169 (2)	0.21810 (12)	0.0241 (4)
H1	0.527 (3)	0.552 (3)	0.1878 (17)	0.022 (6)*
N2	0.4773 (2)	0.64534 (18)	0.29896 (13)	0.0232 (4)
C2	0.3686 (2)	0.5793 (2)	0.31537 (15)	0.0237 (5)
H2A	0.3412	0.5197	0.2723	0.028*
C11	0.7159 (3)	0.6461 (2)	0.10162 (15)	0.0211 (5)
C12	0.7929 (3)	0.5383 (2)	0.09271 (16)	0.0247 (5)
C13	0.8508 (3)	0.5061 (3)	0.00963 (17)	0.0319 (6)
H13	0.9046	0.4332	0.0040	0.038*
C14	0.8296 (3)	0.5809 (3)	-0.06481 (15)	0.0324 (5)
H14	0.8690	0.5590	-0.1213	0.039*
C15	0.7508 (3)	0.6875 (3)	-0.05688 (16)	0.0275 (6)
C16	0.6950 (3)	0.7216 (2)	0.02622 (15)	0.0234 (5)
H16	0.6431	0.7955	0.0318	0.028*
O17	0.7327 (2)	0.7531 (2)	-0.13480 (12)	0.0392 (5)
C17	0.6250 (4)	0.8451 (3)	-0.1348 (2)	0.0440 (8)
H17A	0.5357	0.8090	-0.1149	0.066*
H17B	0.6139	0.8779	-0.1957	0.066*
H17C	0.6517	0.9112	-0.0937	0.066*
C21	0.2849 (3)	0.5918 (2)	0.39774 (14)	0.0214 (5)
C22	0.1683 (3)	0.5158 (2)	0.40985 (14)	0.0260 (5)
H22	0.1440	0.4586	0.3643	0.031*
C23	0.0871 (3)	0.5224 (2)	0.48754 (16)	0.0258 (5)
H23	0.0065	0.4717	0.4945	0.031*
C24	0.1255 (3)	0.6041 (2)	0.55512 (14)	0.0205 (5)
C25	0.2405 (3)	0.6819 (2)	0.54426 (17)	0.0239 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H25	0.2646	0.7383	0.5903	0.029*
C26	0.3199 (3)	0.6764 (2)	0.46560 (14)	0.0252 (5)
H26	0.3979	0.7299	0.4577	0.030*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.04558 (16)	0.03697 (14)	0.03348 (13)	0.01019 (15)	-0.00287 (13)	0.00721 (12)
C1	0.0258 (13)	0.0210 (10)	0.0173 (9)	-0.0010 (9)	0.0012 (10)	-0.0001 (9)
01	0.0473 (13)	0.0280 (9)	0.0236 (7)	-0.0128 (10)	0.0101 (9)	-0.0082 (7)
O2	0.0409 (11)	0.0212 (9)	0.0195 (7)	-0.0053 (8)	0.0122 (8)	-0.0018 (7)
N1	0.0281 (11)	0.0262 (11)	0.0180 (9)	-0.0055 (9)	0.0068 (8)	-0.0077 (8)
N2	0.0271 (10)	0.0270 (10)	0.0154 (8)	0.0011 (8)	0.0064 (9)	-0.0035 (8)
C2	0.0282 (12)	0.0240 (12)	0.0189 (9)	0.0019 (10)	0.0023 (9)	-0.0016 (9)
C11	0.0220 (12)	0.0224 (12)	0.0188 (10)	-0.0060 (10)	0.0024 (9)	-0.0031 (8)
C12	0.0256 (14)	0.0246 (13)	0.0239 (11)	0.0005 (10)	-0.0013 (9)	-0.0013 (9)
C13	0.0303 (16)	0.0316 (14)	0.0338 (13)	0.0099 (12)	0.0025 (11)	-0.0088 (10)
C14	0.0340 (13)	0.0398 (15)	0.0232 (10)	0.0041 (15)	0.0083 (11)	-0.0064 (10)
C15	0.0294 (15)	0.0355 (15)	0.0177 (11)	-0.0026 (12)	0.0026 (10)	-0.0002 (10)
C16	0.0230 (15)	0.0251 (12)	0.0222 (10)	-0.0043 (11)	0.0049 (10)	-0.0022 (9)
O17	0.0472 (13)	0.0501 (13)	0.0204 (8)	0.0101 (10)	0.0085 (8)	0.0074 (9)
C17	0.052 (2)	0.0474 (19)	0.0329 (14)	0.0081 (15)	0.0011 (13)	0.0137 (13)
C21	0.0248 (12)	0.0220 (12)	0.0174 (9)	0.0016 (9)	0.0019 (8)	-0.0023 (8)
C22	0.0321 (13)	0.0262 (11)	0.0197 (9)	-0.0033 (13)	0.0023 (11)	-0.0065 (8)
C23	0.0286 (14)	0.0257 (12)	0.0230 (11)	-0.0080 (10)	0.0052 (10)	-0.0034 (9)
C24	0.0286 (12)	0.0163 (11)	0.0165 (9)	0.0026 (9)	0.0055 (9)	0.0003 (8)
C25	0.0315 (14)	0.0197 (12)	0.0205 (11)	-0.0010 (11)	0.0039 (10)	-0.0054 (9)
C26	0.0265 (13)	0.0241 (11)	0.0248 (10)	-0.0046 (13)	0.0029 (12)	-0.0023 (9)

Geometric parameters (Å, °)

Br1—C12	1.905 (2)	C15—O17	1.373 (3)
C1—01	1.234 (3)	C15—C16	1.395 (3)
C1—N1	1.338 (3)	C16—H16	0.9500
C1-C11	1.515 (3)	O17—C17	1.434 (4)
O2—C24	1.375 (3)	С17—Н17А	0.9800
O2—H2	0.84 (5)	С17—Н17В	0.9800
N1—N2	1.398 (3)	С17—Н17С	0.9800
N1—H1	0.86 (3)	C21—C22	1.396 (4)
N2	1.282 (3)	C21—C26	1.409 (3)
C2—C21	1.466 (3)	C22—C23	1.390 (3)
C2—H2A	0.9500	C22—H22	0.9500
C11—C12	1.393 (3)	C23—C24	1.394 (3)
C11—C16	1.406 (3)	С23—Н23	0.9500
C12—C13	1.397 (3)	C24—C25	1.392 (4)
C13—C14	1.391 (4)	C25—C26	1.393 (3)
С13—Н13	0.9500	C25—H25	0.9500
C14—C15	1.390 (4)	C26—H26	0.9500
C14—H14	0.9500		

01—C1—N1	124.5 (2)	C15-C16-H16	120.1
01—C1—C11	121.5 (2)	C11-C16-H16	120.1
N1—C1—C11	114.0 (2)	C15—O17—C17	117.1 (2)
С24—О2—Н2	110 (3)	O17-C17-H17A	109.5
C1—N1—N2	119.3 (2)	O17—C17—H17B	109.5
C1—N1—H1	117.8 (18)	H17A—C17—H17B	109.5
N2—N1—H1	122.7 (18)	O17—C17—H17C	109.5
C2—N2—N1	114.07 (19)	H17A—C17—H17C	109.5
N2—C2—C21	122.8 (2)	H17B-C17-H17C	109.5
N2—C2—H2A	118.6	C22—C21—C26	119.1 (2)
C21—C2—H2A	118.6	C22—C21—C2	118.8 (2)
C12—C11—C16	119.7 (2)	C26—C21—C2	122.1 (2)
C12—C11—C1	123.5 (2)	C23—C22—C21	121.0 (2)
C16—C11—C1	116.9 (2)	С23—С22—Н22	119.5
C11—C12—C13	120.2 (2)	С21—С22—Н22	119.5
C11—C12—Br1	121.37 (17)	C22—C23—C24	119.2 (2)
C13—C12—Br1	118.36 (19)	С22—С23—Н23	120.4
C14—C13—C12	119.9 (2)	С24—С23—Н23	120.4
C14—C13—H13	120.0	O2—C24—C25	122.3 (2)
С12—С13—Н13	120.0	O2—C24—C23	116.9 (2)
C15—C14—C13	120.2 (2)	C25—C24—C23	120.9 (2)
C15-C14-H14	119.9	C26—C25—C24	119.7 (2)
C13—C14—H14	119.9	С26—С25—Н25	120.1
O17—C15—C14	115.7 (2)	C24—C25—H25	120.1
O17—C15—C16	124.1 (3)	C25—C26—C21	120.1 (2)
C14—C15—C16	120.2 (2)	С25—С26—Н26	120.0
C15—C16—C11	119.7 (2)	C21—C26—H26	120.0
O1—C1—N1—N2	-3.6 (4)	C14—C15—C16—C11	-1.5 (4)
C11—C1—N1—N2	179.3 (2)	C12—C11—C16—C15	0.4 (4)
C1—N1—N2—C2	173.1 (2)	C1-C11-C16-C15	-179.2 (2)
N1—N2—C2—C21	178.2 (2)	C14—C15—O17—C17	164.8 (3)
O1—C1—C11—C12	115.3 (3)	C16—C15—O17—C17	-14.7 (4)
N1-C1-C11-C12	-67.5 (3)	N2-C2-C21-C22	-180.0 (2)
O1—C1—C11—C16	-65.2 (3)	N2-C2-C21-C26	-1.1 (4)
N1-C1-C11-C16	112.0 (3)	C26—C21—C22—C23	-0.1 (4)
C16—C11—C12—C13	0.9 (4)	C2—C21—C22—C23	178.7 (2)
C1—C11—C12—C13	-179.6 (2)	C21—C22—C23—C24	-1.7 (4)
C16—C11—C12—Br1	179.08 (19)	C22—C23—C24—O2	-177.9 (2)
C1—C11—C12—Br1	-1.4 (3)	C22—C23—C24—C25	2.3 (4)
C11—C12—C13—C14	-1.1 (4)	O2—C24—C25—C26	179.0 (2)
Br1—C12—C13—C14	-179.3 (2)	C23—C24—C25—C26	-1.2 (4)
C12—C13—C14—C15	-0.1 (4)	C24—C25—C26—C21	-0.6 (4)
C13—C14—C15—O17	-178.2 (3)	C22—C21—C26—C25	1.3 (4)
C13—C14—C15—C16	1.4 (4)	C2—C21—C26—C25	-177.5 (2)
O17—C15—C16—C11	178.0 (2)		
Hydrogen-bond geometry (Å, °)			
D—H···A	D—H	H···A	<i>D</i> … <i>A D</i> —H… <i>A</i>

supplementary materials

O2—H2···O1 ⁱ	0.84 (5)	2.07 (4)	2.799 (3)	145 (4)
O2—H2···N2 ⁱ	0.84 (5)	2.32 (5)	2.995 (3)	137 (4)
N1—H1···O2 ⁱⁱ	0.86 (3)	2.01 (3)	2.866 (3)	170 (3)
Symmetry codes: (i) $x-1/2$, $-y+3/2$, $-z+1$; (ii) $-x+1/2$, $-y+1$, $z-1/2$.				

